Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118628, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536237

RESUMO

Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.


Assuntos
Brassica napus , Zeolitas , Solo , Triticum , Biomassa , Fertilizantes/análise , Carbono
2.
Materials (Basel) ; 14(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068651

RESUMO

Thermal biomass transformation products are considered to be one of the best materials for improving soil properties. The aim of the study was to assess the effect of charcoal after cavitation on the chemical and biochemical properties of soil. The study was carried out with a 10% aqueous charcoal mixture that was introduced into loamy sand and clay at rates of 1.76%, 3.5%, 7.0%, and 14.0%. The effect of the application of cavitated charcoal was tested on Sorghum saccharatum (L.). Soil and plant material was collected to determine chemical and biochemical properties. The application of cavitated charcoal reduced the acidification of both soils. The highest rate (14.0%) of cavitated charcoal increased the content of soil total carbon (CTot) by 197% in the loamy sand compared to CTot in the control treatments, 19% for clay soil, respectively. The application of cavitated charcoal did not significantly change the total content of heavy metals. Regardless of the element and the soil used, the application of cavitated charcoal reduced the content of the CaCl2-extracted forms of heavy metals. Following the application of cavitated charcoal, the loamy sand soil presented an even lower content of the most mobile forms of the studied elements. It should also be noted that regardless of the soil texture, mobile forms of the elements decreased with the increased cavitated charcoal rate. The results of dehydrogenase and urease activity indicated the low metabolic activity of the microbial population in the soils, especially with the relatively high rates (7.0% and 14.0%) of cavitated charcoal. However, the cavitated charcoal used in the study showed a significant, positive effect on the amount of biomass S. saccharatum (L.), and its application significantly reduced the heavy metal content in the biomass of S. saccharatum (L.).

3.
Sci Rep ; 11(1): 6998, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772045

RESUMO

Biochar and zeolite are widely used in the remediation of soil contaminated with toxic heavy metals. However, the interaction of these amendments and their effects on grass productivity have not been comprehensively summarized. The aim of this study was to investigate the biological effects of zeolite and biochar used as soil amendments in the process of remediating soil contaminated with Cd, Pb and Zn. In a pot experiment, the following treatments were applied: zeolite, biochars produced at temperatures of 350 °C and 550 °C, mixtures of biochars and zeolite, and a control treatment without any amendments. The soil amendments were tested on two grass species: tall fescue (Festuca arundinacea Schreb.) and cocksfoot (Dactylis glomerata L.). The root morphometric parameters and aboveground production were determined in 2017 and 2018.Higher biomass production was observed in the tested grasses in the treatments with zeolite alone (0.229 kg DM m-2) or mixed with the biochars (0.239 kg DM m-2) than in control treatment (0.029 kg DM m-2). Zeolite used in contaminated soil significantly affected root biomass and root morphology parameters. Zeolite application resulted in significantly higher root biomass (2.30 mg cm-3) and root length (76.61 cm cm-3) than those in the treatments without zeolite (0.29 mg cm-3 and 6.90 cm cm-3). Biochar as a soil amendment did not affect most root morphometric parameters. The application of biochars only slightly reduced the root diameter of cocksfoot. The root diameter of tall fescue was similar in all treatments (0.075 mm) except the control (0.063 mm) and biochar 550 treatments (0.067 mm), in which slightly thinner roots were observed.

4.
Top Curr Chem (Cham) ; 375(4): 71, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28712055

RESUMO

Casein is the collective name for a family of milk proteins. In bovine milk, casein comprises four peptides: αS1, αS2, ß, and κ, differing in their amino acid, phosphorus and carbohydrate content but similar in their amphiphilic character. Hydrophilic and hydrophobic regions of casein show block distribution in the protein chain. Casein peptides carry negative charge on their surface as a result of phosphorylation and tend to bind nanoclusters of amorphous calcium phosphate. Due to these properties, in suitable conditions, casein molecules agglomerate into spherical micelles. The high content of casein in milk (2.75 %) has made it one of the most popular proteins. Novel research techniques have improved understanding of its properties, opening up new applications. However, casein is not just a dietary protein. Its properties promise new and unexpected applications in science and the pharmaceutical and functional food industries. One example is an encapsulation of health-related substances in casein matrices. This review discusses gelation, coacervation, self-assembly and reassembly of casein peptides as means of encapsulation. We highlight information on encapsulation of health-related substances such as drugs and dietary supplements inside casein micro- and nanoparticles.


Assuntos
Caseínas/química , Animais , Portadores de Fármacos/química , Nanopartículas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
5.
Postepy Hig Med Dosw (Online) ; 70(0): 989-1000, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27668651

RESUMO

It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses - bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic importance. The paper presents current state of research on bacteriophages targeted against Campylobacter.

6.
Tree Physiol ; 36(1): 121-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26420794

RESUMO

For many years, scientists have been searching for nondestructive methods for the measurement of plant root system parameters. The measurement of electrical capacitance (EC) across the root has been proposed as one such nondestructive method. This article presents a study on the determination of relationships between EC measurement and the shape and size of the electrodes immersed in medium that are used for measurement. Measurement of EC and the parameters characterizing root systems of 1-year-old seedlings of the common beech Fagus sylvatica L. was conducted under laboratory conditions. The measurements of EC were performed between seedling root systems and two different electrodes in the form of a cylinder or a rectangular plate. Statistically significant correlations were found between the capacitance and root system parameters in both the variants; however, the correlations were higher in the case of the flat rectangular plate. Correlation coefficient (r) between EC and total root length was  0.688 for cylindrical electrode and  0.802 for rectangular plate, for total root area 0.641 and 0.818, and for dry weight of root system 0.502 and 0.747. The best-fitted linear regression relationships between the EC and the measured parameters were characterized by low determination coefficients in variants with cylindrical electrodes, and higher with flat rectangular plate electrodes. The results indicated that a two-dielectric media concept is a better model than Dalton's model when attempting to interpret the behavior of root and soil capacitance. The different electrodes probably allow root capacitance measurements to be interpreted from different aspects. However, this hypothesis requires further verification.


Assuntos
Capacitância Elétrica , Fagus/fisiologia , Árvores/fisiologia , Eletrodos , Raízes de Plantas/fisiologia
7.
Environ Monit Assess ; 187(11): 674, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26446128

RESUMO

Tillering is defined as the process of above-ground shoot production by a single plant. The number of grass tillers is one of the most important parameters in ecology and breeding studies. The number of tillers is usually determined by manually counting the separated shoots from a single plant. Unfortunately, this method is too time-consuming. In this study, a new method for counting grass tillers based on image analysis is presented. The usefulness of the method was evaluated for five grass species, Phleum pratense, Lolium perenne, Dactylis glomerata, Festuca pratensis and Bromus unioloides. The grass bunches were prepared for analysis by cutting and tip painting. The images obtained were analysed using an automatic procedure with separation of shoots and other objects based on morphological parameters. It was found that image analysis allows for very quick and accurate counting of grass tillers. However, the set of morphological parameters for object recognition must be selected individually for different grass species. This method can be recommended as a replacement for the traditional, time-consuming method in grass breeding.


Assuntos
Monitoramento Ambiental/métodos , Poaceae , Lolium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...